Noncommutative jordan algebras with commutators satisfying an alternativity condition.
نویسنده
چکیده
The theorems of this paper show that the main results in the structure and representation theory of Jordan algebras and of alternative algebras are valid for a larger class of algebras defined by simple identities which obviously hold in the Jordan and alternative cass. A new unification of the Jordan and associative theories is also achieved.
منابع مشابه
A Generalization of Noncommutative Jordan Algebras*
and x y denotes the product x ‘3~ = my + y.2’. In Section 1 we show that a noncommutative Jordan algebra of characteristic # 2 must satisfy (1). Since power-associative algebras satisfying (1) need not be flexible [5] it follows that the class of power-associative algebras satisfying (1) is strictly larger than the class of noncommutative Jordan algebras. In Section 2 we obtain a structure theo...
متن کاملCharacterization of n–Jordan homomorphisms on Banach algebras
In this paper we prove that every n-Jordan homomorphis varphi:mathcal {A} longrightarrowmathcal {B} from unital Banach algebras mathcal {A} into varphi -commutative Banach algebra mathcal {B} satisfiying the condition varphi (x^2)=0 Longrightarrow varphi (x)=0, xin mathcal {A}, is an n-homomorphism. In this paper we prove that every n-Jordan homomorphism varphi:mathcal {A} longrightarrowmathcal...
متن کاملOn n-ary Algebras, Branes and Polyvector Gauge Theories in Noncommutative Clifford Spaces
Polyvector-valued gauge field theories in noncommutative Clifford spaces are presented. The noncommutative star products are associative and require the use of the Baker-Campbell-Hausdorff formula. Actions for pbranes in noncommutative (Clifford) spaces and noncommutative phase spaces are provided. An important relationship among the n-ary commutators of noncommuting spacetime coordinates [X, X...
متن کاملThe Tits—kantor—koecher Construction for Jordan Dialgebras
We study a noncommutative generalization of Jordan algebras called Leibniz— Jordan algebras. These algebras satisfy the identities [x1x2]x3 = 0, (x 2 1 , x2, x3) = 2(x1, x2, x1x3), x1(x 2 1 x2) = x 2 1 (x1x2); they are related with Jordan algebras in the same way as Leibniz algebras are related to Lie algebras. We present an analogue of the Tits— Kantor—Koecher construction for Leibniz—Jordan a...
متن کاملThe Relationship Between Two Commutators
We clarify the relationship between the linear commutator and the ordinary commutator by showing that in any variety satisfying a nontrivial idempotent Mal’cev condition the linear commutator is definable in terms of the centralizer relation. We derive from this that abelian algebras are quasi–affine in such varieties. We refine this by showing that if A is an abelian algebra and V(A) satisfies...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 65 1 شماره
صفحات -
تاریخ انتشار 1970